Name: 
 

Algebra 2 Finals Review



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 
 
Find the opposite and the reciprocal of the number.
 

 1. 

500
a.
–500, mc001-1.jpg
c.
500, mc001-3.jpg
b.
–500, mc001-2.jpg
d.
500, mc001-4.jpg
 

 2. 

Simplify mc002-1.jpg.
a.
14
b.
8
c.
–8
d.
–14
 
 
Evaluate the expression for the given value of the variable(s).
 

 3. 

mc003-1.jpg; mc003-2.jpg, mc003-3.jpg
a.
–55
b.
55
c.
5
d.
–5
 

 4. 

mc004-1.jpg; x = –3
a.
–76
b.
62
c.
32
d.
30
 
 
Simplify by combining like terms.
 

 5. 

mc005-1.jpg
a.
mc005-2.jpg
b.
mc005-3.jpg
c.
mc005-4.jpg
d.
mc005-5.jpg
 

 6. 

mc006-1.jpg
a.
mc006-2.jpg
b.
mc006-3.jpg
c.
mc006-4.jpg
d.
mc006-5.jpg
 

 7. 

If a = b, then a – c ____ equals bc.
a.
always
b.
sometimes
c.
never
 
 
Solve the equation.
 

 8. 

mc008-1.jpg
a.
mc008-2.jpg
b.
mc008-3.jpg
c.
mc008-4.jpg
d.
mc008-5.jpg
 

 9. 

mc009-1.jpg
a.
14, 4
c.
14, –14
b.
–4, –14
d.
–4, 4
 
 
Solve the equation or formula for the indicated variable.
 

 10. 

mc010-1.jpg, for U
a.
mc010-2.jpg
b.
mc010-3.jpg
c.
mc010-4.jpg
d.
mc010-5.jpg
 
 
Solve for x. State any restrictions on the variables.
 

 11. 

mc011-1.jpg
a.
mc011-2.jpg; mc011-3.jpg
c.
mc011-6.jpg; mc011-7.jpg
b.
mc011-4.jpg; mc011-5.jpg
d.
mc011-8.jpg; mc011-9.jpg
 

 12. 

A rectangle is 3 times as long as it is wide. The perimeter is 60 cm. Find the dimensions of the rectangle. Round to the nearest tenth if necessary.
a.
7.5 cm by 22.5 cm
c.
20 cm by 60 cm
b.
7.5 cm by 52.5 cm
d.
15 cm by 22.5 cm
 

 13. 

Two cars leave Denver at the same time and travel in opposite directions. One car travels 10 mi/h faster than the other car. The cars are 500 mi apart in 5 h. How fast is each car traveling?
a.
35 mi/h and 45 mi/h
c.
45 mi/h and 55 mi/h
b.
55 mi/h and 35 mi/h
d.
55 mi/h and 65 mi/h
 

 14. 

Michael has $12,500 to invest. He invests part in an account which earns 4.2% annual interest and the rest in an account which earns 6.2% annual interest. He earns $669.50 in interest at the end of the year. How much was invested at each rate?
a.
$5,000 at 4.2%, $7,500 at 6.2%
c.
$7,500 at 4.2%, $5,000 at 6.2%
b.
$7,225 at 4.2%, $5,275 at 6.2%
d.
$5,275 at 4.2%, $7,225 at 6.2%
 

 15. 

An inequality ____ has a real number solution.
a.
always
b.
sometimes
c.
never
 
 
Solve the inequality. Graph the solution set.
 

 16. 

–4k + 5 £ 21
a.
k ³ –4
mc016-1.jpg
c.
k £ –4
mc016-4.jpg
b.
k ³ mc016-2.jpg
mc016-3.jpg
d.
k £ mc016-5.jpg
mc016-6.jpg
 

 17. 

2(2m – 5) – 6 > –36
a.
m < mc017-1.jpg
mc017-2.jpg
c.
m < –5
mc017-4.jpg
b.
m > –5
mc017-3.jpg
d.
m > mc017-5.jpg
mc017-6.jpg
 

 18. 

4(3b – 5) < –31 + 12b
a.
no solutions
mc018-1.jpg
c.
b > mc018-4.jpg
mc018-5.jpg
b.
b < mc018-2.jpg
mc018-3.jpg
d.
all real numbers
mc018-6.jpg
 

 19. 

26 + 6b ³ 2(3b + 4)
a.
all real numbers
mc019-1.jpg
c.
b ³ mc019-4.jpg
mc019-5.jpg
b.
b £ mc019-2.jpg
mc019-3.jpg
d.
no solutions
mc019-6.jpg
 
 
Solve the compound inequality. Graph the solution set.
 

 20. 

5x + 10 ³ 10 and 7x – 7 £ 14
a.
x ³ mc020-1.jpg or x £ mc020-2.jpg
mc020-3.jpg
c.
x ³ mc020-6.jpg or x £ 3
mc020-7.jpg
b.
x ³ 0 and x £ mc020-4.jpg
mc020-5.jpg
d.
x ³ 0 and x £ 3
mc020-8.jpg
 

 21. 

4x – 5 < –17 or 5x + 6 > 31
a.
x < –3 or x > 5
mc021-1.jpg
c.
x < –3 or x > mc021-5.jpg
mc021-6.jpg
b.
x < mc021-2.jpg or x > mc021-3.jpg
mc021-4.jpg
d.
x < mc021-7.jpg or x > 5
mc021-8.jpg
 

 22. 

mc022-1.jpg
a.
mc022-2.jpgmc022-3.jpg
c.
mc022-6.jpg
mc022-7.jpg
b.
mc022-4.jpg
mc022-5.jpg
d.
mc022-8.jpg
mc022-9.jpg
 
 
Solve the inequality. Graph the solution.
 

 23. 

mc023-1.jpg
a.
–18 > x > 8
mc023-2.jpg
c.
–36 < x < 16
mc023-4.jpg
b.
–18 < x < 8
mc023-3.jpg
d.
mc023-5.jpg
mc023-6.jpg
 

 24. 

Write the ordered pairs for the relation. Find the domain and range.
mc024-1.jpg
a.
{(–2, 5), (–1, 2), (0, 1), (1, 2), (2, 5)}; domain: {–2, –1, 0, 1, 2}; range: {1, 2, 5}
b.
{(5, –2), (2, –1), (1, 0), (2, 1), (5, 2)}; domain: {–2, –1, 0, 1, 2}; range: {1, 2, 5}
c.
{(–2, 5), (–1, 2), (0, 1), (1, 2), (2, 5)}; domain: {1, 2, 5}; range: {–2, –1, 0, 1, 2}
d.
{(5, –2), (2, –1), (1, 0), (2, 1), (5, 2)}; domain: {1, 2, 5}; range: {–2, –1, 0, 1, 2}
 

 25. 

Use the vertical-line test to determine which graph represents a function.
a.
mc025-1.jpg
c.
mc025-3.jpg
b.
mc025-2.jpg
d.
mc025-4.jpg
 

 26. 

Suppose mc026-1.jpg and mc026-2.jpg.
Find the value of mc026-3.jpg.
a.
mc026-4.jpg
b.
mc026-5.jpg
c.
mc026-6.jpg
d.
mc026-7.jpg
 

 27. 

Graph the equation mc027-1.jpg.
a.
mc027-2.jpg
c.
mc027-4.jpg
b.
mc027-3.jpg
d.
mc027-5.jpg
 

 28. 

Graph the equation mc028-1.jpg by finding the intercepts.
a.
mc028-2.jpg
c.
mc028-4.jpg
b.
mc028-3.jpg
d.
mc028-5.jpg
 

 29. 

Graph the equation –3xy = 6.
a.
mc029-1.jpg
c.
mc029-3.jpg
b.
mc029-2.jpg
d.
mc029-4.jpg
 
 
Find the slope of the line through the pair of points.
 

 30. 

mc030-1.jpg
a.
mc030-2.jpg
b.
mc030-3.jpg
c.
mc030-4.jpg
d.
mc030-5.jpg
 
 
Write in standard form an equation of the line passing through the given point with the given slope.
 

 31. 

slope = –8; (–2, –2)
a.
8x + y = –18
b.
–8x + y = –18
c.
8xy = –18
d.
8x + y = 18
 

 32. 

slope = mc032-1.jpg; (5, –3)
a.
mc032-2.jpgx + y = mc032-3.jpg
c.
mc032-6.jpgx + y = mc032-7.jpg
b.
mc032-4.jpgxy = mc032-5.jpg
d.
mc032-8.jpg x + y = mc032-9.jpg
 
 
Find the slope of the line.
 

 33. 

mc033-1.jpg
a.
mc033-2.jpg
b.
mc033-3.jpg
c.
mc033-4.jpg
d.
mc033-5.jpg
 

 34. 

mc034-1.jpg
a.
mc034-2.jpg
b.
mc034-3.jpg
c.
mc034-4.jpg
d.
mc034-5.jpg
 

 35. 

mc035-1.jpg
a.
undefined
b.
2
c.
1
d.
0
 
 
Find an equation for the line:
 

 36. 

through (2, 6) and perpendicular to y = mc036-1.jpgx + 1.
a.
y = mc036-2.jpgx mc036-3.jpg
b.
y = mc036-4.jpgx mc036-5.jpg
c.
y = mc036-6.jpgx mc036-7.jpg
d.
y = mc036-8.jpgx mc036-9.jpg
 
 
Determine whether y varies directly with x. If so, find the constant of variation k and write the equation.
 

 37. 


x
y
6
24
18
72
54
216
162
648
a.
yes; k = 4; y =4x
c.
yes; k = 6; y =6x
b.
yes; k = 3; y =3x
d.
no
 

 38. 


x
y
6
7.2
11
13.2
16
19.2
21
25.2
a.
yes; k = 1.2; y = 1.2x
c.
yes; k = 6
b.
yes; k = 5
d.
no
 

 39. 

A new candle is 8 inches tall and burns at a rate of 2 inches per hour.
a.Write an equation that models the height h after t hours.
b.Sketch the graph of the equation.
a.
mc039-1.jpg
mc039-2.jpg
c.
mc039-5.jpg
mc039-6.jpg
b.
mc039-3.jpgmc039-4.jpg
d.
mc039-7.jpg
mc039-8.jpg
 

 40. 

A 3-mi cab ride costs $3.00. A 6-mi cab ride costs $4.80. Find a linear equation that models cost c as a function of distance d.
a.
c = 0.80d + 1.20
c.
d = 0.60c + 1.80
b.
c = 1.00d + 1.80
d.
c = 0.60d + 1.20
 

 41. 

Graph the set of data. Decide whether a linear model is reasonable. If so, draw a trend line and write its equation.
{(1, 7), (–2, 1), (3, 13), (–4, –3), (0, 5)}
a.
yes; mc041-1.jpg
mc041-2.jpg
c.
yes; mc041-5.jpg
mc041-6.jpg
b.
yes; mc041-3.jpg
mc041-4.jpg
d.
yes; mc041-7.jpg
mc041-8.jpg
 
 
Graph the absolute value equation.
 

 42. 

mc042-1.jpg
a.
mc042-2.jpg
c.
mc042-4.jpg
b.
mc042-3.jpg
d.
mc042-5.jpg
 

 43. 

The graph models a train’s distance from a river as the train travels at a constant speed. Which equation best represents the relation?
mc043-1.jpg
a.
mc043-2.jpg
b.
mc043-3.jpg
c.
mc043-4.jpg
d.
mc043-5.jpg
 

 44. 

Write the equation for the translation of mc044-1.jpg.
mc044-2.jpg
a.
mc044-3.jpg
b.
mc044-4.jpg
c.
mc044-5.jpg
d.
mc044-6.jpg
 

 45. 

Graph the equation of y = |x| translated 4 units up.
a.
mc045-1.jpg
c.
mc045-3.jpg
b.
mc045-2.jpg
d.
mc045-4.jpg
 

 46. 

Write the equation that is the translation of mc046-1.jpg left 1 unit and up 2 units.
a.
mc046-2.jpg
c.
mc046-4.jpg
b.
mc046-3.jpg
d.
mc046-5.jpg
 

 47. 

Graph the function mc047-1.jpg.
a.
mc047-2.jpg
c.
mc047-4.jpg
b.
mc047-3.jpg
d.
mc047-5.jpg
 

 48. 

A doctor’s office schedules 15-minute appointments and half-hour appointments for weekdays. The doctor limits these appointments to, at most, 30 hours per week. Write an inequality to represent the number of 15-minute appointments x and the number of half-hour appointments y the doctor may have in a week.
a.
mc048-1.jpg
c.
mc048-3.jpg
b.
mc048-2.jpg
d.
mc048-4.jpg
 
 
Graph the absolute value inequality.
 

 49. 

y < |x + 2| – 2
a.
mc049-1.jpg
c.
mc049-3.jpg
b.
mc049-2.jpg
d.
mc049-4.jpg
 

 50. 

Graph the function mc050-1.jpg.
a.
mc050-2.jpg
c.
mc050-4.jpg
b.
mc050-3.jpg
d.
mc050-5.jpg
 

 51. 

An independent system of two linear equations ____ has an infinite number of solutions.
a.
always
b.
sometimes
c.
never
 

 52. 

The length of a rectangle is 7.8 cm more than 4 times the width. If the perimeter of the rectangle is 94.6 cm, what are its dimensions?
a.
length = 7.9 cm; width = 39.4 cm
c.
length = 39.4 cm; width = 15.7 cm
b.
length = 23.8 cm; width = 15.7 cm
d.
length = 39.4 cm; width = 7.9 cm
 
 
Use the elimination method to solve the system.
 

 53. 

mc053-1.jpg
a.
(0, –2)
b.
(–2, 0)
c.
(–2, 2)
d.
(2, –2)
 

 54. 

mc054-1.jpg
a.
f = –7, g = 5
c.
f = 5, g = 7
b.
f = –5, g = –7
d.
f = 5, g = –7
 

 55. 

mc055-1.jpg
a.
(5, –6)
c.
(–5, 6)
b.
no solutions
d.
infinite solutions
 
 
Solve the system of inequalities by graphing.
 

 56. 

mc056-1.jpg
a.
mc056-2.jpg
c.
mc056-4.jpg
b.
mc056-3.jpg
d.
mc056-5.jpg
 

 57. 

mc057-1.jpg
a.
mc057-2.jpg
c.
mc057-4.jpg
b.
mc057-3.jpg
d.
mc057-5.jpg
 

 58. 

Equivalent systems of two linear equations ____ have the same solutions.
a.
always
b.
sometimes
c.
never
 

 59. 

A system of two linear inequalities ____ has a solution.
a.
always
b.
sometimes
c.
never
 

 60. 

Find the values of x and y that maximize the objective function P = 3x + 2y for the graph. What is the maximum value?
mc060-1.jpg
a.
maximum value at (5, 4); 32
c.
maximum value at (9, 0); 27
b.
maximum value at (0, 8); 16
d.
maximum value at (0, 0); 0
 

 61. 

Given the system of constraints, name all vertices. Then find the maximum value of the given objective function.
mc061-1.jpg

Maximum for mc061-2.jpg
a.
(0, 2), (2, 0), (4, 6); maximum value of –6
b.
(0, 2), (2, 0), (6, 4); maximum value of 12
c.
(0, 2), (2, 0), (4, 2); maximum value of 10
d.
(0, 2), (2, 0), (4, 6); maximum value of 8
 

 62. 

The maximum value of a linear objective function ____ occurs at exactly one vertex of the feasible region.
a.
always
b.
sometimes
c.
never
 

 63. 

Your computer supply store sells two types of inkjet printers. The first, type A, costs $137 and you make a $50 profit on each one. The second, type B, costs $100 and you make a $40 profit on each one. You can order no more than 100 printers this month, and you need to make at least $4400 profit on them. If you must order at least one of each type of printer, how many of each type of printer should you order if you want to minimize your cost?
a.
40 of type A
60 of type B
c.
60 of type A
40 of type B
b.
30 of type A
70 of type B
d.
70 of type A
30 of type B
 
 
Identify the given matrix element.
 

 64. 

mc064-1.jpg
mc064-2.jpg
a.
–1
b.
–8
c.
8
d.
–4
 

 65. 

In May, Bradley bought 48 styrofoam balls and decorated them as toy figurines. In June, he sold 19 figurines. In May, Lupe bought 44 styrofoam balls to decorate, and in June, she sold 21 figurines. Which matrix represents all of their May purchases and their June sales?
a.
mc065-1.jpg
c.
mc065-3.jpg
b.
mc065-2.jpg
d.
mc065-4.jpg
 
 
Find the sum or difference.
 

 66. 

mc066-1.jpg
a.
mc066-2.jpg
c.
mc066-4.jpg
b.
mc066-3.jpg
d.
mc066-5.jpg
 

 67. 

mc067-1.jpg
a.
mc067-2.jpg
c.
mc067-4.jpg
b.
mc067-3.jpg
d.
mc067-5.jpg
 

 68. 

mc068-1.jpg
a.
mc068-2.jpg
c.
mc068-4.jpg
b.
mc068-3.jpg
d.
mc068-5.jpg
 

 69. 

mc069-1.jpg
a.
mc069-2.jpg
c.
mc069-4.jpg
b.
mc069-3.jpg
d.
mc069-5.jpg
 

 70. 

Suppose A and B are 2 × 5 matrices. Which of the following are the dimensions of the matrix A + B?
a.
2 × 5
b.
10 × 10
c.
7 × 1
d.
7 × 7
 
 
Use matrices A, B, and C. Find the sum or difference if you can.
nar021-1.jpg
 

 71. 

B + A
a.
mc071-1.jpg
c.
not possible
b.
mc071-2.jpg
d.
mc071-3.jpg
 

 72. 

mc072-1.jpg
a.
not possible
c.
mc072-3.jpg
b.
mc072-2.jpg
d.
mc072-4.jpg
 

 73. 

mc073-1.jpg
a.
mc073-2.jpg
c.
mc073-4.jpg
b.
mc073-3.jpg
d.
none of these
 
 
Find the values of the variables.
 

 74. 

mc074-1.jpg
a.
x = 2, y = 4
c.
x = 4, y = 2
b.
x = –1, y = 3
d.
x = 3, y = –1
 

 75. 

mc075-1.jpg
a.
t = –8, y = 4
c.
t = –2, y = 6
b.
t = 6, y = –8
d.
t = –8, y = 6
 
 
Solve the matrix equation.
 

 76. 

mc076-1.jpg
a.
mc076-2.jpg
c.
mc076-4.jpg
b.
mc076-3.jpg
d.
mc076-5.jpg
 

 77. 

mc077-1.jpg
a.
mc077-2.jpg
c.
mc077-4.jpg
b.
mc077-3.jpg
d.
mc077-5.jpg
 

 78. 

mc078-1.jpg
a.
mc078-2.jpg
c.
mc078-4.jpg
b.
mc078-3.jpg
d.
mc078-5.jpg
 

 79. 

mc079-1.jpg
a.
mc079-2.jpg
b.
mc079-3.jpg
c.
mc079-4.jpg
d.
mc079-5.jpg
 

 80. 

mc080-1.jpg
a.
mc080-2.jpg
c.
mc080-4.jpg
b.
mc080-3.jpg
d.
mc080-5.jpg
 
 
Find the product.
 

 81. 

mc081-1.jpg
a.
mc081-2.jpg
c.
mc081-4.jpg
b.
mc081-3.jpg
d.
[12]
 

 82. 

Find mc082-1.jpg.
mc082-2.jpg
a.
mc082-3.jpg
c.
mc082-5.jpg
b.
mc082-4.jpg
d.
mc082-6.jpg
 
 
Determine whether the product is defined or undefined. If defined, give the dimensions of the product matrix.
 

 83. 

mc083-1.jpg
a.
defined; 2 × 2
c.
defined; 1 × 2
b.
defined; 2 × 1
d.
undefined
 
 
Evaluate the determinant of the matrix.
 

 84. 

mc084-1.jpg
a.
0
b.
mc084-2.jpg
c.
mc084-3.jpg
d.
mc084-4.jpg
 

 85. 

mc085-1.jpg
a.
mc085-2.jpg
b.
mc085-3.jpg
c.
mc085-4.jpg
d.
mc085-5.jpg
 

 86. 

Write the system mc086-1.jpgas a matrix equation. Then identify the coefficient matrix, the variable matrix, and the constant matrix.
a.
mc086-2.jpg
variable matrix:mc086-3.jpg
coefficient matrix:mc086-4.jpg
constant matrix:mc086-5.jpg
c.
mc086-10.jpg
variable matrix:mc086-11.jpg
constant matrix:mc086-12.jpg
coefficient matrix:mc086-13.jpg
b.
mc086-6.jpg
coefficient matrix:mc086-7.jpg
constant matrix:mc086-8.jpg
variable matrix:mc086-9.jpg
d.
mc086-14.jpg
coefficient matrix:mc086-15.jpg
variable matrix:mc086-16.jpg
constant matrix:mc086-17.jpg
 
 
Solve the system.
 

 87. 

mc087-1.jpg
a.
(–3, –2, –4)
c.
(3, –2, –4)
b.
(11, 17, 0)
d.
(–3, 2, 4)
 

 88. 

mc088-1.jpg
a.
(5, –4, 1)
c.
(5, 4, –1)
b.
(–5, –36, –13)
d.
(–5, –4, 1)
 

 89. 

mc089-1.jpg
a.
no unique solution
c.
(2, 1, 5)
b.
(2, 0, –5)
d.
(–2, 0, –5)
 
 
Write the coefficient matrix for the system. Use it to determine whether the system has a unique solution.
 

 90. 

mc090-1.jpg
a.
mc090-2.jpg; yes
c.
mc090-4.jpg; no
b.
mc090-3.jpg; no
d.
mc090-5.jpg; yes
 
 
Determine whether the function is linear or quadratic. Identify the quadratic, linear, and constant terms.
 

 91. 

mc091-1.jpg
a.
linear function
linear term: mc091-2.jpg
constant term: –6
c.
quadratic function
quadratic term: mc091-5.jpg
linear term: mc091-6.jpg
constant term: –6
b.
quadratic function
quadratic term: mc091-3.jpg
linear term: mc091-4.jpg
constant term: –6
d.
linear function
linear term: mc091-7.jpg
constant term: –6
 
 
Identify the vertex and the axis of symmetry of the parabola. Identify points corresponding to P and Q.
 

 92. 

mc092-1.jpg
a.
(–1, –2), x = –1
P'(0, –1), Q'(–3, 2)
c.
(–1, –2), x = –1
P'(–2, –1), Q'(–1, 2)
b.
(–2, –1), x = –2
P'(–2, –1), Q'(–1, 2)
d.
(–2, –1), x = –2
P'(0, –1), Q'(–3, 2)
 

 93. 

A biologist took a count of the number of migrating waterfowl at a particular lake, and recounted the lake’s population of waterfowl on each of the next six weeks.
Week
0
1
2
3
4
5
6
Population
585
582
629
726
873
1,070
1,317

a.Find a quadratic function that models the data as a function of x, the number of weeks.
b.Use the model to estimate the number of waterfowl at the lake on week 8.
a.
mc093-1.jpg; 1,614 waterfowl
b.
mc093-2.jpg; 2,679 waterfowl
c.
mc093-3.jpg; 1,961 waterfowl
d.
mc093-4.jpg; 2,201 waterfowl
 

 94. 

A manufacturer determines that the number of drills it can sell is given by the formula mc094-1.jpg, where p is the price of the drills in dollars.
a.At what price will the manufacturer sell the maximum number of drills?
b.What is the maximum number of drills that can be sold?
a.
$60; 285 drills
c.
$31; 2,418 drills
b.
$30; 2,415 drills
d.
$90; 8,385 drills
 

 95. 

Which is the graph of mc095-1.jpg?
a.
mc095-2.jpg
c.
mc095-4.jpg
b.
mc095-3.jpg
d.
mc095-5.jpg
 

 96. 

Write mc096-1.jpg in vertex form.
a.
mc096-2.jpg
c.
mc096-4.jpg
b.
mc096-3.jpg
d.
mc096-5.jpg
 
 
Factor the expression.
 

 97. 

mc097-1.jpg
a.
mc097-2.jpg
c.
mc097-4.jpg
b.
mc097-3.jpg
d.
mc097-5.jpg
 

 98. 

mc098-1.jpg
a.
mc098-2.jpg
c.
mc098-4.jpg
b.
mc098-3.jpg
d.
mc098-5.jpg
 

 99. 

mc099-1.jpg
a.
mc099-2.jpg
c.
mc099-4.jpg
b.
mc099-3.jpg
d.
mc099-5.jpg
 

 100. 

mc100-1.jpg
a.
mc100-2.jpg
c.
mc100-4.jpg
b.
mc100-3.jpg
d.
mc100-5.jpg
 

 101. 

mc101-1.jpg
a.
mc101-2.jpg
c.
mc101-4.jpg
b.
mc101-3.jpg
d.
mc101-5.jpg
 

 102. 

The function mc102-1.jpg models the height y in feet of a stone t seconds after it is dropped from the edge of a vertical cliff. How long will it take the stone to hit the ground? Round to the nearest hundredth of a second.
a.
7.79 seconds
c.
0.25 seconds
b.
11.02 seconds
d.
5.51 seconds
 

 103. 

Simplify mc103-1.jpg using the imaginary number i.
a.
mc103-2.jpg
b.
mc103-3.jpg
c.
mc103-4.jpg
d.
mc103-5.jpg
 

 104. 

Find the missing value to complete the square.
mc104-1.jpg
a.
2
b.
1
c.
4
d.
8
 
 
Solve the quadratic equation by completing the square.
 

 105. 

mc105-1.jpg
a.
mc105-2.jpg mc105-3.jpg
c.
mc105-5.jpg
b.
mc105-4.jpg
d.
mc105-6.jpg
 
 
Rewrite the equation in vertex form.
 

 106. 

mc106-1.jpg
a.
mc106-2.jpg
c.
mc106-4.jpg
b.
mc106-3.jpg
d.
mc106-5.jpg
 

 107. 

mc107-1.jpg
a.
mc107-2.jpg
c.
mc107-4.jpg
b.
mc107-3.jpg
d.
mc107-5.jpg
 
 
Use the Quadratic Formula to solve the equation.
 

 108. 

mc108-1.jpg
a.
mc108-2.jpg, mc108-3.jpg
b.
mc108-4.jpg, mc108-5.jpg
c.
mc108-6.jpg, mc108-7.jpg
d.
mc108-8.jpg, mc108-9.jpg
 

 109. 

mc109-1.jpg
a.
mc109-2.jpg mc109-3.jpg
c.
mc109-6.jpg mc109-7.jpg
b.
mc109-4.jpg mc109-5.jpg
d.
mc109-8.jpg mc109-9.jpg
 

 110. 

mc110-1.jpg
a.
mc110-2.jpg mc110-3.jpg
c.
mc110-6.jpg mc110-7.jpg
b.
mc110-4.jpg mc110-5.jpg
d.
mc110-8.jpg mc110-9.jpg
 

Short Answer
 

 111. 

sa111-1.jpg
 

 112. 

Is the relation {(3, 5), (–4, 5), (–5, 0), (1, 1), (4, 0)} a function? Explain.
 

 113. 

Find the slope of the line. Show your work.

Rx + Sy = T
 

 114. 

Graph sa114-1.jpg.
sa114-2.jpg
 

 115. 

Graph sa115-1.jpg. What is the minimum value of the function?
sa115-2.jpg
 

 116. 

Graph sa116-1.jpg. Does the function have a maximum or minimum value? What is this value?
sa116-2.jpg
 

 117. 

Graph sa117-1.jpg.
sa117-2.jpg
 

Essay
 

 118. 

Write the equation of the line that contains the point (8, –3) and is perpendicular to es118-1.jpg. Graph the equation. Write the equation in standard form. Show your work.
 

 119. 

Use the following data: es119-1.jpg.
a.Make a scatter plot.
b.Draw a trend line for your scatter plot.
c.Write a linear equation for your trend line. Show your work.
 

 120. 

A fish market buys tuna for $.50 per pound and spends $1.50 per pound to clean and package it. Salmon costs $2.00 per pound to buy and $2.00 per pound to clean and package. The market makes $2.50 per pound profit on tuna and $2.80 per pound profit for salmon. The market can spend only $106 per day to buy fish and $134 per day to clean it. How much of each type of fish should the market buy to maximize profit?
a.Write an objective function P and constraints for a linear program to model the problem.
b.Graph the constraint and find the coordinates of each vertex.
c.Evaluate P at each vertex to find the maximum profit.
 

 121. 

Maribel is going to build a rectangular pen for her two dogs. She has 180 feet of fencing. To keep the dogs separate, she plans to put fencing down the middle of the pen to split the large rectangle into two smaller rectangles. What are the dimensions and area of the largest pen area she can use to accommodate both dogs? Show and explain your work.
 

 122. 

Show that es122-1.jpg is equal to es122-2.jpg. Then use this to explain how you know that 5 is the minimum value of the function.
 

 123. 

Use a graphing calculator to graph the function es123-1.jpg.
a.What does the graph let you conclude about real number solutions of es123-2.jpg? Explain.
b.Substitute es123-3.jpg for x in the equation es123-4.jpg. Simplify. Is the resulting equation true? Show your work.
c.What conclusions can you state about solutions of es123-5.jpg? Explain.
 

Other
 

 124. 

Describe the vertical-line test for a graph and tell how it can determine whether a graph represents a function.
 

 125. 

Do the values in the table represent a direct variation? Explain your answer.
x
4
5
7
y
13.1
16.3
22.6
 

 126. 

Explain how to determine whether a system is independent, dependent, or inconsistent without graphing.
 

 127. 

Explain how to solve a system of equations by substitution.
 

 128. 

What does the expression ot128-1.jpg represent if A is a matrix? If ot128-2.jpg exists, what can you say about the dimensions of A? Explain.
 

 129. 

A baseball player hits a fly ball that is caught about 4 seconds later by an outfielder. The path of the ball is a parabola. The ball is at its highest point as it passes the second baseman, who is 127 feet from home plate. About how far from home plate is the outfielder at the moment he catches the ball? Explain your reasoning.
 

 130. 

A data processing consultant charges clients by the hour. His weekly earnings E are modeled by the function ot130-1.jpg, where x is his hourly rate in dollars. Can he earn $2500 in a single week? Explain.
 



 
Check Your Work     Start Over